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Periodic orbit theory of broad resonances in two-dimensional 
hydrogenic Stark effect 

T P Grozdanov and M J RakoviC 
Institute of Physics, PO Box 57, 11001 Belgrade, Yugoslavia 

Received 24 May I991 

Abstract. The modified version of periodic orbit theory, developed by Robbins for systems 
which possess discrete symmetries, is used to calculate parameters of broad resonances in 
the case of two-dimensional hydrogenic Stark effect at energies above the zero field 
ionization threshold. It is shown that the contribution of single periodic orbits of the system 
give results that coincide with those of the comparison equation method, also presented 
in the paper. 

1. Introduction 

A general theory which, at least in principle, provides a semiclassical description of 
any system, be it integrable or chaotic in the classical limit, is the periodic orbit theory 
developed by Gutzwiller (1971) (see also Balian and Bloch (1970), Berry and Tabor 
(19761, (1977)). In this theory, the so-called oscillatory part of the semiclassical density 
of states do"( E )  (or response function-trace of Green function gos"(E))  is represented 
as a sum over all periodic orbits of the system (of its classical counterpart). The 
semiclassical approximations of energy eigenvalues then correspond to poles of, e.g. 
g ( E ) ,  on the negative real axis. For integrable systems, the periodic orbit theory has 
been shown to be equivalent to the standard tori quantization (Berry and Tabor 1976, 
1977). On the other hand, for chaotic non-integrable systems, it is often very difficult 
to extract eigenvalues in this way. The main reason is the exponential proliferation of 
periodic orbits with long periods. Nevertheless, considerable advances have been made 
in recent application of periodic orbit theory to calculation of quantum resonances 
for the classically chaotic three-disc scattering problem (CvitanoviC. and Eckhardt 1989). 

In the present paper we shall use periodic orbit theory (section 2) to calculate 
parameters of broad resonances in the case of two-dimensional hydrogen atom in 
uniform electric field at energies above the zero-field ionization threshold ( E  > 0). At 
these energies the system allows only one periodic orbit and the periodic orbit 'sum' 
can easily be calculated. The resonances we shall identify with poles of the response 
function in complex energy plane. Results thus obtained completely agree with those 
of the improved WKB (comparison equation) method presented in section 3. 

Apart from showing efficiency of periodic orbit theory (of its modified version for 
systems with discrete symmetry developed by Robbins (1989)) in calculating reson- 
ances, our example reveals another important aspect of the theory. It emphasizes that 
in periodic orbit sum contributions essentially give not periodic orbits themselves, but 
rather certain manifolds of loops in configuration space having given periodic orbits 
as a limit. It may happen, as in the present case, that to a single periodic orbit belong 
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more than one manifold of the loops; consequently this orbit gives more than one 
term in the periodic orbit sum. 

Concluding this introduction we note that the theoretical interest in broad reson- 
ances arised from their detection in photoionization experiments of rubidium (Freeman 
er al 1978) and hydrogen (Glab er al 1985, Rotke and Welge 1986) atoms in electric 
fields. Many authors have discussed the relation of the single periodic orbit (along 
field direction) in (three-dimensional) hydrogenic Stark effect with either the oscilla- 
tions in photoionization spectra near threshold (Bogomolny 1988, Wintgen 1989) or 
broad resonances i.e. complex poles of S-matrix (Kazansky er al 1990). However, 
direct application of the periodic orbit theory to the three-dimensional case is more 
complicated-apart from separate quantization of the projection of angular momentum 
onto the field axis, it needs the introduction of complex orbits in the theory. This 
problem will be addressed in a future publication. 
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2. Application of periodic orbit theory 

The Hamiltonian function of the two-dimensional hydrogen atom in a uniform electric 
field F reads (throughout this work we set electron mass and charge m, = 1, /el = 1): 

H = i  2Pr +' 2Py - ( X ~ + ~ ' ) - ' / ~ + F ~ ,  (1) 
The system has simple discrete symmetry: the Hamiltonian function (1) is invariant 
under reflections through x-axis, y + -y, i.e. under canonical transformation 
(x, p x ,  y, pv)+ (x. px, -y, - p y ) .  Also, as is well known, the system is separable in semi- 
parabolic coordinates: 

y = u u  x = (u2-02)/2 (2) 

in which the Hamiltonian function takes the form 

To make the mapping between U-U and x-y planes (and corresponding phase spaces) 
one-to-one, we identify the following pairs of points in U-U plane and (u,p., o,p,) 
phase space: 

(4) (U, U) = (-U, - u )  (U, P". 0, P.) = (-U, -P", -0, -PA 

We see that in semiparabolic coordinates, the reflection through x-axis is formally 
represented by two mappings, (U, U) + (-U, U) and (U, U) + (U, -U), but, due to iden- 
tification (4). they are effectively the same transformation. 

We wish to calculate response function g ( E )  (i.e. trace of Green function) of our 
system at energies E > 0 using periodic orbit theory. We use the variant of the theory 
appropriate for systems with discrete symmetries developed by Robbins (1989). His 
main result for the so-called oscillatory part of symmetry-projected semiclassical 
responsc function reads: 

Here, X,  designates the character of the mth irreducible representation (with dimension 
d,) of the given discrete symmetry group. The I sum is taken over primitive periodic 
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orbits (i.e. single traversals of periodic orbits) of the system, but in the reduced phase 
space, while the sum over II accounts for iterations of the primitive orbit (for the 
definition of the reduced phase space we refer readers to Robbins article (1989)). 
is the period, $1 is the action of the Ith primitive orbit, AI is a matrix which represents 
the Poincare surface-of-section map linearized around the Ith orbit; all these quantities 
are defined on reduced phase space. The group element g, depends on the relation 
between Ith primitive orbit in full phase space and its projection on reduced phase 

by the orbit and finally, IKII is the order of the subgroup K ,  of the symmetry group 
which leaves each point of the Ith orbit (in full phase space) invariant. 

To apply equation (5) to our system we have to define reduced phase space, 
irreducible representation of symmetry group and find periodic orbits. Our group 
consists of identity element I and reflection R of x-y  plane through x-axis, and of 

to the group itself, we shall designate it by - (because in space of wavefunctions, 
states with odd parity transform according to this representation) and the other 
representation has only identity element and we designate it by + (because wavefunc- 
tions with even parity transform according to this representation). We have: 

space :see Kobbiiis :w). /il is aii iiiizgzi ie:aied io ihe iiiiiiiLvzi of iaiisiies iiossed 

cc-rse a2 = t, has p j ~ ~  i::e&cib!e one=&zLex..ioxa! :ep:esex:a:ioxs: eoe is i:o-c:phic 

d- = d ,  = 1 x - ( I )  = 1 = -1 x + ( I ) = X + ( R ) = l .  ( 6 )  
Reduced phase space we simply define by giving the corresponding reduced 

configuration space (see Robbins 1989) which is represented by, e.g., upper half of 
x-y plane with x-axis as boundary. In U, U coordinates, reduced configurational space 
is given by region U > 0, U > 0 with positive U and v half-axes as boundaries. 

To find periodic orbits (in reduced phase space) corresponding to Hamiltonian 
function (3) we have to solve corresponding equations of motion. After introducing 
new time-like variable T with d ~ = d t / ( u ~ + u ~ ) ,  it can be easily shown that equations 
of motion corresponding to Hamiltonian function (3) at energy E > 0 and in time t 
are equivalent to equations of motion in time r of two separated one-dimensional 
systems with the following Hamiltonian functions: 

P2 F H, =p- E ~ ~ + -  u4c 2p 
2 2 

where p is a separation constant. We see that the motion in U, p. variables is bounded 
and the action and period (in reduced space U > 0 an3 in time T )  of that motion are 
given by: 

S ( E ,  p ) =  pu d u  = 2  (2Eu'+4P-Fu4)'/'du f 1: 
T(E,  p )  = du/p, = 2  (2Eu2+4P -Fu ' )~ ' / 'du  f r 

where U, > 0 is the turning point-the zero of the first integrand. The motion in variables 
I,, pm is unbounded so that Hamiltonian function (3 )  allows only one periodic orbit 
which corresponds to a unique fixed point of Hamiltonian (7b) ,  for which: 

v,  = 0 P c = O  pc= 1. (9) 
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In U - U  plane this orbit lies on u-axis. Similarly in x-y plane orbit lies on positive 
x-axis and it is invariant under reflections through x-axis, hence: 
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l.Kcl=2. (10) 

In order to investigate stability of the fixed point (9) we expand Hamiltonian function 
(76) in its vicinity by introducing variables Sp = pv -pc, Su = U - U<, and obtain for the 
quadratic part: 

S2H2 = (Sp2)/2+w~(Sv)2/2 w t = - 2 E .  (11) 

We see that the fixed point is unstable and hyperbolic. Therefore the Hamiltonian 
function ( 1 )  allows only one periodic orbit at positive energies, which is unstable, lies 
on positive x-axis and whose action S,, period T, and instability angle wc are given by: 

( 2 E u Z + 4 -  Fu4)’I2 du T , ( E )  = 2  ( 2 E u 2 + 4 -  F u ’ ’ - ’ ’ ~  du (12a) 

w,( E )  = T , a  U: = E /  F i ( E 2 /  F 2 i  41 F)’I2.  (126) 

It seems that in our case the I sum in equation (5) consists of only one term correspond- 
ing to the unique periodic orbit of the system. But apart from the fact that our periodic 
orbit lies on the border of the reduced phase space (because of this the calculation of 
g, and denominator in equation (5) is not trivial), there is another reason preventing 
the straightforward application of equation (5). We recall that in Gutzwiller theory 
periodic orbits arise when the stationary phase method is used to calculate the trace 
of semiclassical approximation of the Green function, whose diagonal element 
G(q, q;  E )  is represented as sum over loops in configuration space (loops are trajec- 
tories that start and end at the same point of configuration space). Then, there is the 
assumption that to each isolated periodic orbit corresponds a unique manifold of loops 
lying close to that orbit and having it as the limit. However, the analysis of classical 
motion shows that to our periodic orbit belong two topologically distinct manifolds 
of loops: one has p < 1 and the other p > 1, while as we know for periodic orbit p = 1.  
Both manifolds give their own contribution to the periodic orbit sum (5) and both 
correspond to our periodic orbit which is, in a sense, degenerated. In other words, 
when applying equation (S), it is necessary to calculate quantities (SI, g,, A,. . .) that 
actually correspond to loops infinitesimally close to periodic orbit. The representatives 
of these two manifolds of loops in reduced U-U space and corresponding trajectories 
in full x-y  configurational space are sketched in figures 1 and 2. We see that there is 
only one, but very important, difference between them: all loops with p < 1 reflect 
once from the u-axis while loops with p > 1 never reach the u-axis. These reflections 
from U- and u-axes are essential because these axes are at the same time boundaries 
of the reduced configurational space and the symmetry axes. 

An account of all topologically different loops follows: for each integer n there are 
two manifolds of loops with action and period infinitesimally close to nS, and nT,. 
Any loop from the first manifold has p < 1 and reflects n times from the U axis and 
once from U axis, while loops with p > 1 also reflect n times from U axis and do not 
reflect from U axis, Two manifolds of loops give different results only for elements g, 
and matrix A, of equation (5) while in both cases 

p c = l  (13) 
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Figure 1. ( a )  and (b)  represent loops with p < I in reduced U-" configurational space. 
me loop given in ( a )  is close to one traversal of periodic orbit (which lies along the u-axis) 
while the loop in ( b )  corresponds to two traversals of periodic orbit. Both loops reflect 
once from U-axis. Corresponding trajenories in the full x - y  plane are given in ( e )  and 
, A ,  U^_^L^.L .-":""."A"" ^_^"^ - " " ~  ..-.:.:..- " ""i" U,- " ~ n  ". "* ̂ .., _. i" E".... , A ,  tL". ,U,. "SlC ""lll ,,.,,C*,""L" CI"I> YllCC p""lL,"c ..+ >.lY".. ,.. ..&".* \.. ,, ...". 
loop (or periodic orbit) in reduced space does not necessarily correspond to loop (or 
periodic orbit) in full space. Actually, starting and ending points of trajectory in full space 
coincide up to the symmetry transformation (see Rabbins 1989). 

(in our case p. simply reduces to the number of turning points of u-motion traversed 
during one period Ti); It is obvious that matrix corresponding to loops with p > 1 
has for eigenvalues exp(nw,) and exp(-nw,) hence 

while because of the reflection from u-axis matrix A< belonging to loops with p < 1 
has for eigenvalues -exp(nw,) and -exp(-nw,) hence 

(146) 

Now we explain how to calculate :he group element g, of equation (5) corresponding 
to a given trajectory in reduced space of our case. It represents the ordered product 
of group elements belonging to the given trajectory. We say that a group element 
belongs to the trajectory if it represents reflection through axis which is boundary of 

from U and U axes s times then the corresponding group element is R'. Therefore: 

- 
IA:-11"2=2 cosh(nwJ2). 

rp.irlmA ---.-a - - A  Fvnm x.rhirh tha tmiertnrw rpflrrtr In nllv P D ~ P  if trniertnrv rdlprtL 
,Ll - . l r l"  "p*L'L Y.." .I"... ,,... ... " .I ..__I I. ... _I. .."._.,, .. ...-,--..,., ."..__." 

g: = R" g: = R"+'.  (15) 

Now, we can calculate two symmetry projected response functions & ( E )  and g ? ( E )  
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Figure 2. Same as figure 1 but for loops with p > 1. Here, in ( a )  and ( b )  trajectories never 
reach the U axis in reduced U-" space, or, in ( e )  and ( d ) ,  never cross the positive x-axis 
in the x-y  plane. 

of our system. Using equations (6), ( lo),  (12)-(15) in equation ( 5 )  one obtains: 

Expanding the functions in denominators according to formulae: 
m 

then changing formally the order of sums in n and k and finally summing up geometric 
series in index n, one obtains: 

0: = S , / h  - 71/2+i(2k+ 1/2)w, 0 ;  = Se/ h - 3 r / 2  + i(2k + 3/2) w.. (186) 
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From the last equation we immediately see that response functims g , ( E )  have poles 
in complex plane whenever 9; = 2sv,  s, k = 0, 1,2, . . . . Therefore for resonances with 
even parity we have the condition: 

& ( E )  = (2s+  1 / 2 ) v h  - ih (2k+  1 / 2 ) w , ( E )  (1%) 

while for resonances with odd parity we have: 

& ( E )  = ( 2 s + 3 / 2 ) r h  - i h ( 2 k + 3 / 2 ) w C ( E )  s , k = O , 1 , 2  ,.... ( 1 % )  

s, k=O, 1 , 2 , .  . . 

3. Comparison equation method 

In this section we shall identify broad resonances with complex values of energy for 
which the Schrodinger equation has solutions in the form of the 'outgoing waves' in 
* U  directions (see Grozdanov et a1 1988). To Hamiltonian function ( 3 )  corresponds 
the following Schrodinger equation: 

+ E  -P(u ,u)=O.  (20) 1 ( z ( u 2 + " Z ) ( 5 + 3 + U Z + V 1 - F -  f i 2  2 u2- u2 
2 

We allow variables U and U to take all positive and negative values, but because of 
identification ( 4 )  of points in configurational space we impose the following condition 
on the wavefunction 9: 

W ( u , u ) = 9 ( - u , - u ) .  (21) 
The assumption that @ has the form -P( U, U )  = @ , ( u ) @ ~ ( u )  permits separation into two 
ordinary differential equations: 

(220)  
fi' f + ( 2 E u 2 -  d2$ F u 4 + 4 p ) @ ,  = O  

du 

d 2 h  
du 

f i 2 , + ( 2 E ~ 2 + F ~ 4 + 4 (  1 -p))@' = O  

TI-.- I^^. A...- "-.."a:--" ... ̂"I...*, "-,.."..":-,.Al.̂ ---- "-:"-- -̂.."A:-.. ...̂.I-.-> n-.---.. 
111G Ida, LWU cq"dLlu"J w c  >,,a11 D U l V C i  uJlrrg LILG curnpdLr>url GqUd,,",, IIICLIIU". D C l U l C  

doing it we note that according to the preceding section we expect that resonances at 
energies E > O  are related to the periodic orbit which lies along x-axis and has p = 1 .  
Therefore we seek solutions of equations (22a, b )  for which 

p = 1 + y f i  y =  O(1).  (23)  
For comparison equations we take the following: 

As is well known linearly independent solutions of last two equations are given 
respectively by: 

$ ; ( z )  = D i U / h - i ~ / 2 ( f f i ~ / J W  ( 2 5 0 )  

& ( w )  = Dlijv-,)/2(fiw e"""/G) (256) 
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where D is parabolic cylinder function (see Abramowitz and Stegun 1970). NOW we 
seek the solutions of equations (22a. 6 )  in the form 

T P Grozdanou and M J RakouiC 

( 2 6 0 )  $ ? ( u ) = ( z ' ( u ) ) -  dJ,(z(u)) 

$:(U) = ( w ' ( u ) ) - ' / 2 d J z w ( ~ ) )  (266)  

z ( U ) = Z g ( U ) + f i z ! ( u ) + .  .. (270) 
W ~ u ) = W , ( U ) + f i w l ( u ) +  . . .  (27b)  

I / ?  * 

with the expansions 

.U. = uo + lip> + . . . 
U = U,+ fiu, +. . . . 

For zo(u )  we obtain the standard equation: 

while the condition of continuity of zb(u) on real axis gives: 

U: = E / F + (  E2/F2+4p/F)1i2.  ( 2 8 ~ )  

1/2 

w o ( u )  =sgn(u)[ 2 1;"' (ZEf'+N4)1/2 dr] 

while the condition of continuity of w I ( u )  on real axis gives: 

(2%) 

Now using the asymptotic behaviour for large argument of function D (Abramowitz 
and Stegun 1970) one finds that the condition for functions dJ:(z) to be quadratically 
integrable reads: 

pol fi - 1 = 2 n ,  n , = O , 1 , 2  ,... (30a)  

or, from (286)  

2 ~ ~ ( 2 E u ' - F ~ ~ + 4 p ) ' ~ ~ d r = ( n , + l / 2 ) n f i  n ,  =o, 1 , 2 , .  . . (306)  

and in that case for the wavefunctions $:(U) we obtain, up to the first order in f i :  

$?n, ( U 1 = (2% U )) -'I2&, (*Azo(  u)/V"Q. ( 3 1 0 )  

$;",(U) = ( - l ) " l$ ;n , (u)  $ L , ( - u )  = ( - l ) " V L , ( u ) .  (316)  

Again using the asymptotic behaviour for large argument of function D one finds that 

From the last and equation (28a)  we have equalities 

!he cnndl!lon fer !-??nc!Ions & ( w )  !O represen! 8" ou!going w2ve reads 

iu,-1=2n2 n , = O ,  I J , .  . . (320)  

/3 = 1 + i h m (  n2+f)  

or, from (296)  

n 2 = 0 ,  1,2 , .  . . (326)  
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and in that case for the wavefunctions $;(U) we obtain, up to the first order in h:  

&(U) = (w;(~))-~'~D.,(d?w~ e-'"''/fi). (33a) 

When condition (32a) is fulfilled, the function 4;(w) represents an incoming wave. 
From (33a) and (29a) we have equality 

$L2(-IJ) = ( - l ) n v L 2 ( u ) .  (336) 

We see that our system has resonances for (complex) values of energy for which are 
simultaneously fulfilled conditions (306) and (326) and in that case the wavefunction 
of resonance is given by: 

$",J4 0) = $L,(u)$L*(u). (34) 

Now, the condition (21) together with the equalities (316) and (336) implies that 
integers nt and n2 can be either simultaneously even or odd, i.e. either 

nl=2s ,  . . .  n,=2k,.  . . s , k = O , 1 , 2  ,... (35a) 

n , = 2 s + l , .  . . n , = 2 k +  1,. . . s ,k=O,1 ,2  ,... (356) 

for resonances with even parity, or 

for resonances with odd parity. One can easily show that (306) and (326) together 
with the condition (3Sa) [(35b)] are up to first order in h equivalent with (190) [(196)]. 

References 

Abramowitz M and Stegun I A 1970 Handbook of Mathemdeal Functions (New York Dover) 
Balian R a n d  Bloch C 1970 Ann. Phys., N Y  85 514 
Berry M V and Tabor M 1976 Proc. R. Soc. A 349 101 
Berry M V and Tabor M 1977 3. Phys. A: Moth. Gen. IO 371 
Bogamolny E B 1988 Pis. Zh. Ekp.  Teoe. Fiz 47 445 (Sou. Phyr-3ETPLstt. 47 526) 
CvitanoviC P and Echardt B 1989 Phys. Re". Lett. 63 823 
Freeman R R, Economou N P, Bjorklund G C and Lu K T 1978 Phy.  Rev. Lett. 41 1463 
Glab W L, Yao K N D and Nayfeh M H 1985 Phys. Re". A 31 3677 
Grazdanov T P, KrstiC P S, RakoviC M J and Solov'ev E A 1988 Phys. Lett. 132A 262 
Gutmiller M C 1971 3. Math. Phys. 12 343 
Kazansky A K, Ostrovsky V N a n d  Telnov D A 1990 3, Phys. E: At. Mol. Opt. Phys. 23 L433 
Robbins 1 M 1989 Phys. Rev. A 40 2128 
Rotke H and Welge K H 1986 Phys. Reo. A 33 301 
Wintgen D 1989 3. Phys. E: At. Mol. Opt Phys. 22 L5 


